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Abstract—Sixth and twelfth order plate theory solutions for cylindrical bending plate problems,
efficiently obtained by a preliminary reduction of the twelfth order theory for general cylindrical
bending to a boundary value problem for a fourth order ODE, demonstrate the adequacy of these
theories for the interior of thick plates with a thickness-to-span ratio 4 up to 1/2 (at least). In
contrast, Kirchhoff"s classical thin plate theory is not adequate for values of the same ratio greater
than 1/10. Comparison with the corresponding interior solutions of 3-D elastostatics shows that
the twelfth order theory captures the (numerically small) first order correction term in the thickness-
to-span parameter ¢ not possible by lower order plate theories. While it is a qualitatively important
feature, this additional term associated with the effect of transverse normal stress does not sig-
nificantly improve the plate theory approximation quantitatively for isotropic plates.

I. INTRODUCTION

This note is concerned with the small deformation of a homogenceous, isotropic, elastic flat
plate of uniform thickness 24, Under external loads, the three-dimensional clastostatic
response of a flat plate is now known to consist of an interior component significant
throughout the plate and a boundury layer component which is negligibly small except in
a narrow region adjacent to the edge(s) of the plate, Gregory (1991). A method was
developed recently by Gregory and Wan (1984, 1985a,b, 1988) for obtaining the interior
solution component, up to terms exponentially small tn the thickness parameter, without
any reference to the boundary layer solution component. The interior solution of several
boundary value problems were solved in Gregory and Wan (1984, 1985b, 1988) and in Lin
and Wan (1990a.b) to illustrate the application of this method. The results show that the
corresponding Kirchhofl's thin plate solutions gencrally deviate from these interior solu-
tions by more than 35% for a thickness-to-span ratio /L equal to 0.2 (and by more than
10% for h/L = 0.1).

To the extent that a two-dimensional plate theory is often more practical (than the
interior solution method of Gregory and Wan) for the analysis of complex plate problems,
a more refined plate theory (than the Kirchhoff theory) is needed for plates with A/L > 0.1,
In this paper, we use the cylindrical bending problems of Gregory and Wan (1984) 1o obtain
some indication of the range of applicability of the sixth order theory of Reissner (1945)
and the twelfth order theory of Lo er af. (1977) and Reissner (1983, 1987). Our analysis is
simplified considerably by a preliminary reduction of the twelfth order theory for cylindrical
bending to a two-point boundary value problem (BVP) for a fourth order ODE. The
solution of this BVP shows that the twelfth order theory actually captures new qualitative
features of the exact solution of the three-dimensional problem not already contained in
the solution of the lower order plate theories. At the same time, we find that the sixth order
theory is quantitatively adequate for /L < 1/2 and very accurate for A/L < 0.2.

2. CYLINDRICAL BENDING UNDER UNIFORM PRESSURE

The problem of interest here is an infinitely long isotropic, homogeneous, linearly
elastic plate strip free of interior loading and under uniform pressure +g/2 at the two plate
faces x; = +h. At the two edges of the plate strip x, = + L, the plate is fixed so that the
displacement components vanish there
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Fig. 1. Midplane center displacements for v = 1/3 (normalized by the corresponding Kirchhof?
theory solution) as functions of the thickness-to-span ratio & = ;L obtained from (i) the sixth order
plate theory. (it) the twelfth order plate theory, and (i) the interior sotution of Gregory and Wan.

Xp=*L uy=uy=uy=0 (Jx,| <o, Jo| €h).

The lincar clastostatic response of such a plate to the prescribed unitorm pressure dis-
tributions is a state of planc strain with all stress and displacement components uniform in
the x, dircction. The interior solution for this problem has been obtained in Gregory and
Wan (1984). The transverse displacement at the center of the plate is given by that solution
up to exponentially small terms in & = i/L. We denote this solution by wy, = (0, 0) with
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is the corresponding Kirchhofl plate theory solution. The coefficients {¢}, '} depend only
on Poisson’s ratios v and are given in Gregory and Wan (1984) for v = 1/4, 1/3 and 1/2.

The expression (1) for w;/wy reduces to unity for g = h/L = 0. For ¢ > 0, we intuitively
expect w; to be larger than wy as a KirchhofT plate is effectively transversely rigid (with all
transverse shear and transverse normal strains vanishing identically). We learn from the
results of Gregory and Wan (1984) that this is in fact the case except for ¢ < 10~ since ¢%
was found to be 0(10~') there. The dependence of the center displacement on the aspect
ratio given by (1) can be found in Gregory and Wan (1984) for v = 1/2 and is shown in
Fig. | for v = 1/3. We see that w, is one and one-half times that of the Kirchhoff theory for
¢ = 1/5. In general, the interior solution provides a useful bench mark for the approximate
solutions by higher order plate theories.t

+ There are a number of printing crrors and inconsistencics in the results of Gregory and Wan (1984) which
have been corrected above. For example, the very last term of eqn (8.11) in Gregory and Wan (1984) (multiplying
£*) should be 6(v — 1)} instead of 6veY ; this has been corrected in (1). The correction involves a change of order
(h/L)* and is therefore negligibly small for £ < 0.2. Also, the thickness parameter # was sct cqual to 1 in Section
8 of Gregory and Wan (1984).
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3. THE BOUNDARY VALUE PROBLEM FOR THE TWELFTH ORDER PLATE THEORY

The method for the correct interior solution for plate problems developed in Gregory
and Wan (1984, 1985a. 1988) requires a substantial amount of calculation even for simpie
problems such as cylindrical bending. It is often preferable to obtain more tractable,
accurate two-dimensional plate theory solutions for the same problems. For the more
refined twelfth order plate theory of Reissner (1983, 1987), the stress distributions in the
deformed body are stipulated to be

I(M\ My, M, =M2|)-13_ + % (P, P3Py = Pz,)(ﬂméx_g)
3 *

(0||-U::-0'x:=0:1)=§ s h 2 PE h 3
3(0..27) Y, 1(5..5) X3 X
(5t3=535-5:3=032}=2—‘—lhg—~ l-k-; +~8'-L’*;— 1—6};%-1‘-5;;:- s
_ 3 X3 lxg 1 X3 x; xg)
"-‘3""’4"(7{—3/1-‘)"8T(h" w7 @)

The two-dimensional stress measures M (x, x2), Q,(x;.x2), Py(x;, x;), S,(x).x;) and
T{x,, x,) are to be determined by the two-dimensional equilibrium equations
Qii+Q249=0, §,,+85,-T=0
My +My:—Q,=0. Py +Py;—-8=0 (j=12) (2b)
and the Euler differential equations of the variational principle for stresses and dis-
placcments with (2a) as the comparison functions, Reissner (1983). The following weighted

average of the displacement components appear naturally in the resulting two-dimensional
plate theory :

Pl (33X /1 3xt St
("'L)_J‘.;,)vx”[(d-.lipv . §~2F+§h—‘ dx,

(4, uy) 3x5

A
(‘ﬁ1-¢z)=jh h 3%

For cylindrical plate bending problems, we have ( ), =0 and four of the equilibrium
equations for the twelfth order theory in (2b) simplify to

I 3
_ (uy,u3) (3 x; 5 x3
dxs, (W )) = —b—“,;r"<§*k--2—};3- dx;. (20

Qui=-—q My ,=0Q, S.,.=T, P,=S,. 3)

The corresponding linear elastic stress-strain relations for a transversely isotropic plate
from Reissner (1983) are

My =Dyl + (1 +v)(Bu,g+ BuyrT). (4a)

My = Dylvé 1+ (1 +v)(Buqg+ ByrT)] (4b)
$i+wy = BoQ,+BpsSi, ¥,+v, = BsS, + BosQ (5a,b)
Py = Dp[Y 1.1+ (1 +v)(Bp,q+ BprT)), (6a)

Pay = Dp[w + (1 +v)(Bp,g+ Bpr ] (6b)

0= Cr,g+CrT—Byr(M+ M) = Bor(Pyy + Py3) &)

where



550 F. Y. M. Wax

189 3 1683 153 34k
=2 . = — = — = — = —— = o
Bo=2lBos =" Bs=5g C=35 C=750Cn= 35E.
4 2ER° 189 't
Du:ﬁDP:m. B‘\lq=21B,uT=ZIBF';= TBPT:”;;“"-::~ (8)
2 Shy EE,

For isotropic plates. we have E. = E.v.=vand G = £ 2(1 +v).
The two edges x, = + L of the plate for our cylindrical bending problems are clamped
so that

Xy=%L: w=¢, =y, =v=0. (9)

For a homogeneous plate of constant thickness, the quantities w. A, M,.. ¢. £,,. T and
P,, are seen to be even functions of x, and Q,. ¢,. S, and ¢, are odd functions of x,.
Therefore, it suffices to obtain the solution for 0 < x,; < L subject to the end conditions

=0 ¢, =y, =v,=w, =0, (10a)
.V1=L: ¢|=¢I|=L'=W=0. (lOb)

The differential equations (3), (4a), (5a). (5b) and (6a) constitute an eighth order lincar
system. The eight boundary conditions (9) (or (10a) and (10b)) are consistent with the
order of this system. The first two equilibrium equations in (3) can be integrated immediately
to give

Q= —qv,, M= .M(,—ﬁ(/.\'f (1. 12)

where M, is an unknown constant of integration to be determined by the end conditions.
We have made use of the fact that @, is an odd function to chiminate a second constant of
integration,

4. SOLUTION OF THE SIXTH ORDER THEORY
Reissner’s sixth order plate theory is obtained from the twelfth order theory by sctting
S,=P,=T=0in(2) (and in the variational functional used in Reissner (1983)). Intro-
duction of the expression for M, in (12) into (4a) and integrating the result gives

Dyd, = Myx, —igxi — (1 +v)Dy By,qx, (13)

where we have used the fact that ¢, is an odd function to climinate the constant of
integration. The edge condition ¢ (L) = 0 determines M, o be

6

1 2 (/L : D.\t R\h, )
My =gl +(1+v)DyBy,qg="-1+6(1+v) I . (14)
With ¢, completely determined, the relation (5a) becomes an equation for w , which
can be integrated to give

Dyw = Dywy— %Iwo-’cf + % ‘1-"? + %‘{-“fD.w[(l +v) By, — Byl (15)

where wy is a constant of integration and M, is given by (14). Just as in Kirchhoff’s theory,
the solution (15) is smooth throughout the plate ; it contains no layer components near the

plate edges.
The edge condition w(L) = 0 determines the constant w, which gives the transverse

displacement at the isotropic plate center (wg) of Reissner’s sixth order plate theory:
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Not surprisingly, wy tends to the Kirchhoff solution as ¢ — 0. For A/L > 0, the more
flexible Reissner plate (which allows for transverse shear deformations) suffers a larger
center deflection as expected. The graphs in Fig. | show that wy is also larger than the
corresponding interior solution value w;. Given that the sixth order theory is a consequence
of the principle of minimum complementary energy for a restricted class of comparison
functions, this is also not surprising. Numericai results for v = 1/3 show that wy exceeds
the interior solution wy by less than 7.3% for ¢ = 1/2 and less than 2.4% for ¢ = 0.2 the
corresponding Kirchhoff solution is only two thirds of the interior solution for ¢ = 0.2!

While the sixth order theory is sufficiently accurate for an approximate solution, its
first order correction to the Kirchhoff solution is 0(¢*) and not 0(¢) as shown in (1). Though
the 0(¢”) terms are in fact dominant except for A/L < 1072, it is still of theoretical interest
to examine the first order correction of the twelfth order theory.

5. REDUCTION OF THE TWELFTH ORDER THEORY TO A TWO-POINT BVP

The first two equilibrium equations in (3) have already been integrated to give @, and
M,, = qL*M up to a constant of integration M, (see (11) and (12)). The other two
cquilibrium equations can be used to express S, and Tin terms of P,, = ¢L*P:

S, =qL’P,, T=S8,,=qLP,,. (17a.b)

Equations {4a) and (6a) arc then used to express ¢, and ¢, in terms of P and known
quantitics :

) Dy (1

Dy, =ql” {M"‘ —‘i(izil} [Bu, + BMTP"(-Y)}} (18a)
. D.(1

Doy, = qL-{P—- Pl By, + B,,TP"(.v)l} (18b)

where x = x/L and ( )" = d( )/dx. These expressions allow us to eliminate ¢, and ¢, ,
from (4b), (6b) and (7). The resulting expression for v is

v =q{Cr,+CrP"—(14v)ByrL*M—~(1+v)Bp;L* P}, (18¢)

where
Cry = Cry=(1=V)Dyy ByuyByr = (1 v Dp By, By, (13d)
C'r= Cr“!(l‘-VI)DMB;’;T"‘(I'—FZ)DPBg}". (183)

The corresponding expressions for M, and P, will not be needed here.
Next, we use (3d) and (18¢) to eliminate S, and v from (5b) to get ¢, in terms of P:

¢
vi= —qL{ZI- P —(Bs+(1+ V) Bpr] P+ [Bgs + (1 +V)Bur]x}- (9

Upon substituting (19) into (18b), we obtain a single fourth order ODE for P alone:

D,Cr . D D,B
& Lpm— Z;i[as+2(! +V)Bur]P’+P = — —-’}79-“ (20)

where we have made use of B, = By, to simplify the right-hand side.
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The fourth order ODE (20) is supplemented by four boundary conditions. We observed
earlier that P is an even function of x. Hence we must have

x=0: P =P "=0. (2la.b)

The condition (21a), P'(0) = 0, is also a consequence of (5b), (3d), (11) and the second
and third boundary conditions in (10a). The other condition. P"(0) = 0. can also be
obtained from the boundary condition ¢ ,{0) = 0 (see (10a)) along with (19) and (21a).

Two additional boundary conditions for P are obtained from the second and third
boundary condition stipulated in (10b). Expressed in terms of P by (19). the condition
¥, (x, = L) = 0 gives a third boundary condition on P:

¢
LI P” —[Bs+ (1 +)Bpr]P" = —[Bys+ (1 +V) Byl 22a)

x=1:

The condition t{x, = L) = 0 expressed in terms of P by (I8¢} gives the fourth boundary
condition. For the result to be useful, we still need to determine the unknown constant M,
in M(x). This is done with the help of the first boundary condition in (10b), ¢ (x, = L) = 0.
An expression for ¢, in terms of P(x) can be obtained by integrating both sides of (18a)
and keeping in mind that ¢,(x) is an odd function. The resuit is

M | Dy{l+v
Dy (x) = gL'~ 5 x—~ x'— Dull t0) 1, s 1;,,,.p'(.\-)1}. 23
gL 6 L
The condition ¢ ,(x, = L) = 0 now gives
M I Dy(i+v
o T + _f( i “) [‘BMq + BJ[,‘P‘(])IA (24)

qL* 6 L

With the help of (24), we eliminate M, from (18¢) and write the condition ¢(x, = L) =0
ds

x=1: CP'=DyBL (1 +v)* P ~Bo(1+Vv)L*P

I DyBy, 1+ v}j’ .
MM . {22b
3 L (22b)

= —'C'rq -1+ V)Bm‘L:[ ; 2

The ODE (20) and the four boundary conditions (21a,b) and (22a, b) definc a two-
point BVP for P(x). Once we have obtained P(x), we can calculate all the remaining stress
and displacement quantities, except w, by way of (11), (12), (17a,b), (18¢c), (19). (23), (4b)
and (6b).

6. THE CENTER DEFLECTION OF THE TWELFTH ORDER THEORY
To get the transverse deflection w(x), we integrate (5a) to obtain

»

XD D, X
= o= {L = 57— TrBes+ (14 )Burd P+ T3 [Bo+ (149 BurP (D] ;}
(25)

The boundary condition w(x, = L) = 0 determines the constant w, and therefore the
displacement at the plate center, denoted by w,;:



Cylindrical bending of thick plates 553

Wi ¥e 4D"{{Bos+u+v)3wm°<0> PO+ 5[(0+9)Burl? “’} =

Wg Wik L

The terms of (26) in braces are expected to reduce wg/wyg toward w;/wy. given that a larger
class of trial solutions is used in the principle of minimum complementary energy to get the
twelfth order theory.

7. TRANSVERSELY INEXTENSIBLE PLATES

For the special case of v, = 1/E, = 0, the BVP for P(x) simplifies considerably. From
(8), we have

Cq = Cr,’ = Cr = 0, B.‘Wq = BMT = Bp,/ = BPT = 0. (27, 28)
It follows from (27). (28) and (18c¢) that C7 = 0 and the DE (20) is reduced to

DPBS " D BQS
[ PP =E

29

From (27), (28). (23) and (19). the condition ¢,(0) = 0 in (10a) is trivially satisfied
and the condition (0) = 0 requires

P'(0) =0 (30a)

With (30a), we sce from (18¢) and (25) that the other two conditions in (10a) are also
satisficd without any additional requirements on P(x). In fact, we have v(x,) = 0 for this
theory.

At the other end, the condition ¢ (x, = L) = 0 requires

B
Py =-¥= (30b)
The condition #(x, = L) is again trivially satisfied while the other two conditions in (10b)

serve to determine M, and w,.
The exact solution of the BVP defined by (29) and (304, b) is

_E cosh (xx/e) _ DeByy
2la sinh (a/t) L

(3D

where @ = ,/45(1 —v)/4 for a transversely inextensible material. If the plate is very thin so
that 0 < ¢ « |, the solution (31) has a boundary layer component with a layer width of the
order of #/L. Away from the edges, we have P~ — D, By¢/L2.

The corresponding center deflection, denoted by w,, is obtained from (26):

10w 28DuBos b0y ooy, (32)

“’K “'K L

For 0 < & « [, we have for an isotropic plate

D,B :
PO) ~ = = — 5(18— 5 <0 (33)
€ ¢ £ &
AR P T Ry T (34)
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It follows that w,, < wg for ¢ > 0. The correction to the center deflection from the sixth
order theory solution. however, is of higher order, 0(¢*) relative to the Kirchhoff solution.
The numerical results for w (> wy) not shown in Fig. I confirm these observations (and
also show that w, > w,.).

8. SOLUTION BY THE TWELFTH ORDER PLATE THEORY

For an isotropic plate, the coefficient D,Cr L* of P in (20} is 0(¢*) and the coefficient
Dp[Bs+2(14v)B,]/L" is 0(c*). Hence the ODE for P is of the singular perturbation type
and we expect layer phenomena near the edges of the plate. With — D, Byy/L” as an exact
particular solution for homogeneous plates of constant thickness, the layer solutions come
from the complementary solutions of the ODE.

The fourth order ODE (20) s of constant coeflicient. It is stratghtforward to obtain
the following general exact solution for this equation which is even in x:

Dy By .
Ply) = "L»fgf [C. cosh (i’ ,\')+('; cosh (lli .v)~ I] (35)

where i and g are the two roots of

D,.Cr Dy :
il":'“‘} put— | ::‘1 [Be+2(14+0)8, "+ 1 =0 (36)

(which are independent of ). For (homogencous and) isotropic plates of uniform thickness,
they are both positive (so that g and g are real) if v > 018535, The form (35) is appropriate
for P in this case. For smaller values of v, uf and u3 are complex conjugates. In cither range
of v, the solution (35) satistics the two boundary conditions (21a, b) at x = 0, The constants
'y and C, are determined by the two conditions (22a) and (22b) at v = 1. For 0 < g« 1,
the complementary component of {33) associated with € and C; are evidently boundary
layer solutions. This can also be seen from the singular perturbation structure of the ODE
(20) given that D,.C,/L*Y = 0(*).

It is not dithicult to see from the explicit solution for €, and €, (not given here) that
for v > 0, we have

POy =0(1), PO) =0(c "), i”(t):()(‘i-_‘). (37

Actual numerical results show that both P'(1) and P(0) are negative for ¢ « 1. It follows
from the expression (26) for the center deflection w, that the correction to the Kirchhoff
solution by the twelfth order theory is 0(g) for v, > 0 since

u By ', 8P (1
12(1 +v) Qig;ff Pl = -ifi [ 6'10;2} = 0(c). (38)

Furthermore, this correction term is now scen to be a Poisson’s ratio effect, associated with
the transverse normal stress and consistent with the result given in (1a) for the interior
solution of the three-dimensional clasticity problem. On the other hand, we have
(1 +v) By /By = v./126 s0 that the contribution of the 0(e) term of (38) is numerically small
compared to the 0(¢°) correction of the sixth order theory except for e = 0(10~ *y or smaller.
This is consistent with the results of Gregory and Wan (1984) for the interior solution.

By the presence of the 0(c) in the central deficction and the layer phenomena in the
stress and displacement distributions, the twelfth order theory has succeeded in capturing
additional qualitative features of the exact solution not possible by the lower order theory.



Cylindrical bending of thick plates 555

The actual numerical value of the center deflection w,, as a function of the thickness-to-
width ratio is shown in Fig. 1 for v = 1/3. With the P’(1) term dominating the P(0) — P(1)
term in (27) and with P'(1) < 0 for 0 <& « I, w;. is smaller than wg for 0 < ¢ « 1. The
graphs in Fig. 1 show that this persists for larger ¢ as we would expect intuitively. The
agreement between w, and w; is within 4.7% for e € 0.5 for v = 1,3 (and v = 1/2 as well).
For comparison, the agreement between wy and w; for ¢ = 1/2 is within 7.3% for v = 1/3.
Hence the sixth order theory is adequate even for relatively thick plates (with a thickness-
to-span ratio up to 1/2).

9. THE SHEARED BLOCK PROBLEM

Another cylindrical bending problem analyzed in Gregory and Wan (1984) is the
sheared rectangular block problem for the same infinitely long plate strip of Section (2).
For the new problem, the top and bottom faces x; = + 4 are freed from surface tractions
so that

Xy=4h: 05, =06:3=053=0 (lx;] <o, |x|<L) 3%

The two sides vy = + L of the plate strip are bonded to rigid walls which are displaced a
distance +wy in the x;-direction (uniformly in the x,-dircction). Of interest here is the
transverse force (per unit edge length) +Q, needed at the edges to produce these edge
displacements.

An approximate solution by KirchhofT's plate theory is

4Ge w,

Qu= =0 = 0. (40)

By Gregory and Wan's (1984) method, the correct solution (up to exponentially small
terms), denoted by @y, is

O« _
@

3»'1? . 6-3vi+(2=vn} , Q2—vn} 3
- U T

! (41)

where @, = Qy/2fore = h/L = 0.5and v = 0.5.
[t is straightforward to apply the sixth order plate theory for the same problem to
obtain the mid plane transverse deflection wy

Wg _ 3/2 .\’3 2DMBQ
we 143D, By/L? {x' A (42)

and the corresponding transverse force at the edge, denoted by Qg :

A1 5(11282v)‘

O«

2K
Similar to the case of uniform pressure loading, the sixth order plate theory solution

for the sheared block problem does not contain any layer component; its first order

correction to the Kirchhoff plate solution is 0(¢*) (and not 0(¢) as in Qx/Q,). On the other
hand. comparison of the numerical value of Qg and Q, for 0 < ¢ € 0.5 shows remarkably
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Fig. 2. The reciprocal of the end transverse shear resultants for v = 1/3 (normalized by the cor-
responding Kirchhoff theory solution) as functions of the thickness-to-span ratio £ = & L obtained

from (i) the sixth order plate theory, (i1) the twelfth order plate theory, and (iii) the interior solution
of Gregory and Wan.

good agreement (see Fig. 2). The discrepancy at ¢ = 0.5 is less than 4.1% of @ for v = 1/3.
In contrast, the corresponding discrepancy for Kirchhott's theory is 82%. Hence, the sixth
order theory is again adequate for this problem.

A solution of the problem has also been obtained using the twelfth order theory with
the edge conditions at x = +1 being ¢, =y, =v =0 and w = +w,. The corresponding
expression for the transverse foree, denoted by Q45 ts

kO 31 +v)DyByr .. 3D,
O _Oc _ ﬂ"‘“puyflﬁww+u+nmmmn. (4)

Qn B o L-

The dimensionless function P(x) = P, /QqL is determined by the fourth order ODE (20)
with the right-hand member set to zero and the four boundary conditions

x=0: P=P" =0 (45a.b)
(",‘ Y

v=1i LR = Br(14n)P = By (14 v)x (45¢)
Cr . ,
Iz P" —[Bpr(1+v)+ By P = Bys+ Byr(l1+v). (45d)

The exact solution of this BVP shows that P(x) is an 0(1) layer solution with a layer width
of order 4 and with P’ (1) > 0. Hence the contribution of the P'(1) term in (44) is 0(¢) and
has the same sign as the corresponding term in Qi /Q,. just as in the uniform pressure load
case. Quantitatively however, the presence of the additional terms in (44) associated with
P(1) and P’ (1) changes Qx/Qg by less than 2% for ¢ < 0.6 and v = 1/3 (or 1/2). The three
ratios, Qx/Qr. Qx/Q1» and Qk/Q, are plotted as functions of the thickness-to-span ratio ¢
in Fig. 2 forv = 1/3.
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